References
References¶
- 1
Nina Vogt. Machine learning in neuroscience. Nature Methods, 15(1):33–33, 2018.
- 2
David M Kent, Ewout Steyerberg, and David van Klaveren. Personalized evidence based medicine: predictive approaches to heterogeneous treatment effects. Bmj, 2018.
- 3
Tamas Spisak, Balint Kincses, Frederik Schlitt, Matthias Zunhammer, Tobias Schmidt-Wilcke, Zsigmond T Kincses, and Ulrike Bingel. Pain-free resting-state functional brain connectivity predicts individual pain sensitivity. Nature communications, 11(1):1–12, 2020.
- 4
Ian Walsh, Dmytro Fishman, Dario Garcia-Gasulla, Tiina Titma, Gianluca Pollastri, Jennifer Harrow, Fotis E Psomopoulos, and Silvio CE Tosatto. Dome: recommendations for supervised machine learning validation in biology. Nature methods, pages 1–6, 2021.
- 5
Christophe Destrieux, Bruce Fischl, Anders Dale, and Eric Halgren. Automatic parcellation of human cortical gyri and sulci using standard anatomical nomenclature. Neuroimage, 53(1):1–15, 2010.
- 6
Nicola K Dinsdale, Emma Bluemke, Stephen M Smith, Zobair Arya, Diego Vidaurre, Mark Jenkinson, and Ana IL Namburete. Learning patterns of the ageing brain in mri using deep convolutional networks. NeuroImage, 224:117401, 2021.
- 7
Declan Butler. When google got flu wrong: us outbreak foxes a leading web-based method for tracking seasonal flu. Nature, 494(7436):155–157, 2013.
- 8
Donald E Hilt and Donald W Seegrist. Ridge, a computer program for calculating ridge regression estimates. Volume 236. Department of Agriculture, Forest Service, Northeastern Forest Experiment …, 1977.
- 9
Fadil Santosa and William W Symes. Linear inversion of band-limited reflection seismograms. SIAM Journal on Scientific and Statistical Computing, 7(4):1307–1330, 1986.
- 10
Robert Tibshirani. Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological), 58(1):267–288, 1996.