import numpy as np
import seaborn as sns
from matplotlib import pyplot as plt
import scipy.integrate as integrate
sns.set(style="white")
import os
from glob import glob
import pandas as pd
from sklearn.preprocessing import StandardScaler
from scipy.stats import wilcoxon
second_level_results = {}
for attr in range(W.shape[0]):
second_level_results[attr] = {}
# for each event type
for event_type in models[0][attr].index:
# skip Intercept
if event_type == 'Intercept':
continue
betas = np.array([models[sub][attr][event_type] for sub in range(len(models))])
statistic, p_value = wilcoxon(betas)
second_level_results[attr][event_type] = {'statistic': statistic, 'p_value': p_value}
/var/folders/rc/b4064_3d4dj60wt9y_447fyr0000gn/T/ipykernel_54834/3958049489.py:105: FutureWarning: The behavior of DataFrame concatenation with empty or all-NA entries is deprecated. In a future version, this will no longer exclude empty or all-NA columns when determining the result dtypes. To retain the old behavior, exclude the relevant entries before the concat operation.
df = pd.concat([df, pd.DataFrame({'time': np.arange(0, len(timeseries[sub][:,0])*_TR_, _TR_),
/var/folders/rc/b4064_3d4dj60wt9y_447fyr0000gn/T/ipykernel_54834/3958049489.py:105: FutureWarning: The behavior of DataFrame concatenation with empty or all-NA entries is deprecated. In a future version, this will no longer exclude empty or all-NA columns when determining the result dtypes. To retain the old behavior, exclude the relevant entries before the concat operation.
df = pd.concat([df, pd.DataFrame({'time': np.arange(0, len(timeseries[sub][:,0])*_TR_, _TR_),
/var/folders/rc/b4064_3d4dj60wt9y_447fyr0000gn/T/ipykernel_54834/3958049489.py:105: FutureWarning: The behavior of DataFrame concatenation with empty or all-NA entries is deprecated. In a future version, this will no longer exclude empty or all-NA columns when determining the result dtypes. To retain the old behavior, exclude the relevant entries before the concat operation.
df = pd.concat([df, pd.DataFrame({'time': np.arange(0, len(timeseries[sub][:,0])*_TR_, _TR_),
/var/folders/rc/b4064_3d4dj60wt9y_447fyr0000gn/T/ipykernel_54834/3958049489.py:105: FutureWarning: The behavior of DataFrame concatenation with empty or all-NA entries is deprecated. In a future version, this will no longer exclude empty or all-NA columns when determining the result dtypes. To retain the old behavior, exclude the relevant entries before the concat operation.
df = pd.concat([df, pd.DataFrame({'time': np.arange(0, len(timeseries[sub][:,0])*_TR_, _TR_),
/var/folders/rc/b4064_3d4dj60wt9y_447fyr0000gn/T/ipykernel_54834/3958049489.py:105: FutureWarning: The behavior of DataFrame concatenation with empty or all-NA entries is deprecated. In a future version, this will no longer exclude empty or all-NA columns when determining the result dtypes. To retain the old behavior, exclude the relevant entries before the concat operation.
df = pd.concat([df, pd.DataFrame({'time': np.arange(0, len(timeseries[sub][:,0])*_TR_, _TR_),
/var/folders/rc/b4064_3d4dj60wt9y_447fyr0000gn/T/ipykernel_54834/3958049489.py:105: FutureWarning: The behavior of DataFrame concatenation with empty or all-NA entries is deprecated. In a future version, this will no longer exclude empty or all-NA columns when determining the result dtypes. To retain the old behavior, exclude the relevant entries before the concat operation.
df = pd.concat([df, pd.DataFrame({'time': np.arange(0, len(timeseries[sub][:,0])*_TR_, _TR_),